Tuesday, June 6, 2023
HomeNanotechnologyPicture-guided most cancers surgical procedure: a story overview on imaging modalities and...

Picture-guided most cancers surgical procedure: a story overview on imaging modalities and rising nanotechnology methods | Journal of Nanobiotechnology


  • World Burden of Illness 2019 Most cancers Collaboration. Most cancers incidence, mortality, years of life misplaced, years lived with incapacity, and disability-adjusted life years for 29 most cancers teams from 2010 to 2019: a scientific evaluation for the worldwide burden of illness research 2019. JAMA Oncol. 2022;8:420–44.

    Article 

    Google Scholar
     

  • Sankar PL, Parker LS. The Precision Medication Initiative’s All of Us Analysis Program: an agenda for analysis on its moral, authorized, and social points. Genet Med. 2017;19:743–50.

    Article 
    PubMed 

    Google Scholar
     

  • Tringale KR, Pang J, Nguyen QT. Picture-guided surgical procedure in most cancers: a method to scale back incidence of constructive surgical margins. Wiley Interdiscip Rev Syst Biol Med. 2018;10: e1412.

    Article 
    PubMed 

    Google Scholar
     

  • Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, et al. Optimistic surgical margins within the 10 most typical strong cancers. Sci Rep. 2018;8:5686.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto H. Intraoperative pathology session throughout urological surgical procedure: influence on closing margin standing and pitfalls of frozen part analysis. Pathol Int. 2021;71:567–80.

    Article 
    PubMed 

    Google Scholar
     

  • Yoo T-Okay, Kang Y-J, Jeong J, Music J-Y, Kang SH, Lee HY, et al. A randomized managed trial for doing vs omitting intraoperative frozen part biopsy for resection margin standing in chosen sufferers present process breast-conserving surgical procedure (OFF-MAP Trial). J Breast Most cancers. 2021;24:569–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, et al. Intraoperative imaging in pathology-assisted surgical procedure. Nat Biomed Eng. 2021;6:503.

    Article 
    PubMed 

    Google Scholar
     

  • Hussain T, Nguyen QT. Molecular imaging for most cancers analysis and surgical procedure. Adv Drug Deliv Rev. 2014;66:90–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowe SP, Pomper MG. Molecular imaging in oncology: present influence and future instructions. CA Most cancers J Clin. 2021;72:333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided most cancers surgical procedure: from present fluorescence molecular imaging strategies to future multi-modality imaging expertise. Theranostics. 2014;4:1072–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pogue BW, Rosenthal EL, Achilefu S, van Dam GM. Perspective overview of what’s wanted for molecular-specific fluorescence-guided surgical procedure. J Biomed Decide. 2018;23:1–9.

    PubMed 

    Google Scholar
     

  • Schouw HM, Huisman LA, Janssen YF, Slart RHJA, Borra RJH, Willemsen ATM, et al. Focused optical fluorescence imaging: a meta-narrative overview and future views. Eur J Nucl Med Mol Imaging. 2021;48:4272–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, et al. Fluorescence-guided imaging for resection margin analysis in head and neck most cancers sufferers utilizing cetuximab-800CW: a quantitative dose-escalation research. Theranostics. 2020;10:3994–4005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, et al. Molecular fluorescence-guided surgical procedure of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility research. Lancet Gastroenterol Hepatol. 2016;1:283–90.

    Article 
    PubMed 

    Google Scholar
     

  • Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively focused nanocarriers for drug supply to most cancers cells. Professional Opin Drug Deliv. 2019;16:481–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Functions of nanoparticles in most cancers drugs and past: optical and multimodal in vivo imaging, tissue focusing on and drug supply. Professional Opin Drug Deliv. 2015;12:1837–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and remedy of ovarian most cancers: scientific utility of nanoparticles and future views. Theranostics. 2018;8:4279–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gooyer JM, Elekonawo FMK, Bremers AJA, Boerman OC, Aarntzen EHJG, de Reuver PR, et al. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgical procedure for peritoneal metastases of colorectal origin. Nat Commun. 2022;13:2621.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, Rovers MM. Novel imaging strategies for intraoperative margin evaluation in surgical oncology: a scientific overview. Int J Most cancers. 2021;149:635–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keereweer S, Van Driel PBAA, Snoeks TJA, Kerrebijn JDF, Baatenburgde Jong RJ, Vahrmeijer AL, et al. Optical image-guided most cancers surgical procedure: challenges and limitations. Clin Most cancers Res. 2013;19:3745–54.

    Article 
    PubMed 

    Google Scholar
     

  • Dhawan AP, D’Alessandro B, Fu X. Optical imaging modalities for biomedical purposes. IEEE Rev Biomed Eng. 2010;3:69–92.

    Article 
    PubMed 

    Google Scholar
     

  • Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic technique for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110:E2288-2297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benson JR, van Leeuwen FWB, Sugie T. Editorial: state-of-the-art fluorescence image-guided surgical procedure: present and future developments. Entrance Oncol. 2021;11: 776832.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Likelihood B. Close to-infrared photos utilizing steady, phase-modulated, and pulsed mild with quantitation of blood and blood oxygenation. Ann N Y Acad Sci. 1998;838:29–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekman M, Girnyi S, Marano L, Roviello F, Chand M, Diana M, et al. Close to-infrared fluorescence image-guided surgical procedure in esophageal and gastric most cancers operations. Surg Innov. 2022;15533506211073416.

  • Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging methods for image-guided interventions. Nanophotonics. 2019;8:99–116.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura Y, Takada M, Imamura M, Higami A, Jiaxi H, Fujino M, et al. Usefulness and prospects of sentinel lymph node biopsy for sufferers with breast most cancers utilizing the medical imaging projection system. Entrance Oncol. 2021;11: 674419.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boussedra S, Benoit L, Koual M, Bentivegna E, Nguyen-Xuan H-T, Bats A-S, et al. Fluorescence guided surgical procedure to enhance peritoneal cytoreduction in epithelial ovarian most cancers: a scientific overview of accessible information. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2022;48:1217–23.


    Google Scholar
     

  • Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME. Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma results in larger extent of resection with higher outcomes: a scientific overview. J Neurooncol. 2022;156:233–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahrens LC, Krabbenhøft MG, Hansen RW, Mikic N, Pedersen CB, Poulsen FR, et al. Impact of 5-aminolevulinic acid and sodium fluorescein on the extent of resection in high-grade gliomas and mind metastasis. Cancers. 2022;14:617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajakumar T, Yassin M, Musbahi O, Harris E, Lopez JF, Bryant RJ, et al. Use of intraoperative fluorescence to boost robot-assisted radical prostatectomy. Future Oncol Lond Engl. 2021;17:1083–95.

    Article 
    CAS 

    Google Scholar
     

  • van Keulen S, Nishio N, Fakurnejad S, Birkeland A, Martin BA, Lu G, et al. The scientific utility of fluorescence-guided surgical procedure in head and neck most cancers. J Nucl Med. 2019;60:758–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buda A, Di Martino G, Vecchione F, Bussi B, Dell’Anna T, Palazzi S, et al. Optimizing methods for sentinel lymph node mapping in early-stage cervical and endometrial most cancers: comparability of real-time fluorescence with indocyanine inexperienced and methylene blue. Int J Gynecol Most cancers. 2015;25:1513–8.

    Article 
    PubMed 

    Google Scholar
     

  • Kan X, Zhang F, Zhou G, Ji H, Monsky W, Ingraham C, et al. Interventional real-time optical imaging steering for full tumor ablation. Proc Natl Acad Sci U S A. 2021;118: e2113028118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azargoshasb S, Boekestijn I, Roestenberg M, KleinJan GH, van der Hage JA, van der Poel HG, et al. Quantifying the influence of signal-to-background ratios on surgical discrimination of fluorescent lesions. Mol Imaging Biol. 2022;25:180.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS, Lingg JGP, et al. Focused multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Strategies. 2022;19:353–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology. 2017;28: 055102.

    Article 
    PubMed 

    Google Scholar
     

  • Biffi S, Garrovo C, Macor P, Tripodo C, Zorzet S, Secco E, et al. In vivo biodistribution and lifelong evaluation of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft utilizing time-domain near-infrared optical imaging. Mol Imaging. 2008;7:272–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal R, Hom M, van den Berg NS, Lwin T, Lee Y-J, Prilutskiy A, et al. First scientific outcomes of fluorescence lifetime-enhanced tumor imaging utilizing receptor focused fluorescent probes. Clin Most cancers Res. 2022;clincanres.3429.2021.

  • Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, et al. The complementary worth of intraoperative fluorescence imaging and Raman spectroscopy for most cancers surgical procedure: combining the incompatibles. Eur J Nucl Med Mol Imaging. 2022;49:2364.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kouri MA, Spyratou E, Karnachoriti M, Kalatzis D, Danias N, Arkadopoulos N, et al. Raman spectroscopy: a personalised decision-making device on clinicians’ palms for in situ most cancers analysis and surgical procedure steering. Cancers. 2022;14:1144.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, et al. Detection of human mind tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7:309ra163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollon TC, Lewis S, Pandian B, Niknafs YS, Garrard MR, Garton H, et al. Speedy intraoperative analysis of pediatric mind tumors utilizing stimulated Raman histology. Most cancers Res. 2018;78:278–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jermyn M, Mok Okay, Mercier J, Desroches J, Pichette J, Saint-Arnaud Okay, et al. Intraoperative mind most cancers detection with Raman spectroscopy in people. Sci Transl Med. 2015;7:274ra19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumamoto Y, Harada Y, Tanaka H, Takamatsu T. Speedy and correct peripheral nerve imaging by multipoint Raman spectroscopy. Sci Rep. 2017;7:845.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minamikawa T, Harada Y, Takamatsu T. Ex vivo peripheral nerve detection of rats by spontaneous Raman spectroscopy. Sci Rep. 2015;5:17165.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang LV, Yao J. A sensible information to photoacoustic tomography within the life sciences. Nat Strategies. 2016;13:627–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ntziachristos V, Razansky D. Molecular imaging via multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110:2783–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karthikesh MS, Yang X. Photoacoustic image-guided interventions. Exp Biol Med. 2020;245:330–41.

    Article 
    CAS 

    Google Scholar
     

  • Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Lehy J, et al. Metastatic standing of sentinel lymph nodes in melanoma decided noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7:317ra199.

    Article 
    PubMed 

    Google Scholar
     

  • Vonk J, Kukačka J, Steinkamp PJ, de Wit JG, Voskuil FJ, Hooghiemstra WTR, et al. Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral most cancers sufferers utilizing an EGFR-targeted distinction agent and intrinsic tissue distinction: a proof-of-concept research. Photoacoustics. 2022;26: 100362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, et al. Multispectral optoacoustic tomography for evaluation of Crohn’s illness exercise. N Engl J Med. 2017;376:1292–4.

    Article 
    PubMed 

    Google Scholar
     

  • Goh Y, Balasundaram G, Tan HM, Putti TC, Tang SW, Ng CWQ, et al. Biochemical “decoding” of breast ultrasound photos with optoacoustic tomography fusion: first-in-human show of lipid and collagen indicators on breast ultrasound. Photoacoustics. 2022;27: 100377.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Corridor NC, et al. A complete overview of radioguided surgical procedure utilizing gamma detection probe expertise. World J Surg Oncol. 2009;7:11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pashazadeh A, Friebe M. Radioguided surgical procedure: bodily ideas and an replace on technological developments. Biomed Tech (Berl). 2020;65:1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Lindsley CW, Müller CE, Bongarzone S. Diagnostic and therapeutic radiopharmaceuticals. J Med Chem. 2022;65:12497–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariani G, Vaiano A, Nibale O, Rubello D. Is the “very best” gamma-probe for intraoperative radioguided surgical procedure conceivable? J Nucl Med. 2005;46:388–90.

    PubMed 

    Google Scholar
     

  • Harris CC, Bigelow RR, Francis JE, Kelley GG, Bell PR. A CsI(Tl)-crystal surgical scintillation probe. Nucleon US Ceased Publ [Internet]. 1956 [cited 2022 Nov 14]. Out there from: https://www.osti.gov/biblio/4366797.

  • Borgstein PJ, Pijpers R, Comans EF, van Diest PJ, Growth RP, Meijer S. Sentinel lymph node biopsy in breast most cancers: pointers and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg. 1998;186:275–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.

    Article 
    PubMed 

    Google Scholar
     

  • Collamati F, Bocci V, Castellucci P, De Simoni M, Fanti S, Faccini R, et al. Radioguided surgical procedure with β radiation: a novel utility with Ga68. Sci Rep. 2018;8:16171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collamati F, Pepe A, Bellini F, Bocci V, Chiodi G, Cremonesi M, et al. Towards radioguided surgical procedure with β- decays: uptake of a somatostatin analogue, DOTATOC, in meningioma and high-grade glioma. J Nucl Med. 2015;56:3–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solfaroli Camillocci E, Schiariti M, Bocci V, Carollo A, Chiodi G, Colandrea M, et al. First ex vivo validation of a radioguided surgical procedure method with β-radiation. Phys Medica PM Int J Devoted Appl Phys Med Biol. 2016;32:1139–44.

    CAS 

    Google Scholar
     

  • Baier J, Rix A, Kiessling F. Molecular ultrasound imaging. Latest Outcomes Most cancers Res Fortschritte Krebsforsch Progres Dans Rech Sur Most cancers. 2020;216:509–31.

  • Del Bene M, Perin A, Casali C, Legnani F, Saladino A, Mattei L, et al. Superior ultrasound imaging in glioma surgical procedure: past gray-scale B-mode. Entrance Oncol. 2018;8:576.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giammalva GR, Ferini G, Musso S, Salvaggio G, Pino MA, Gerardi RM, et al. Intraoperative ultrasound: rising expertise and novel purposes in mind tumor surgical procedure. Entrance Oncol. 2022;12: 818446.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moiraghi A, Prada F, Delaidelli A, Guatta R, Could A, Bartoli A, et al. Navigated intraoperative 2-dimensional ultrasound in high-grade glioma surgical procedure: influence on extent of resection and affected person end result. Oper Neurosurg Hagerstown Md. 2020;18:363–73.

    Article 

    Google Scholar
     

  • Piscaglia F, Nolsøe C, Dietrich CF, Cosgrove DO, Gilja OH, Nielsen MB, et al. The EFSUMB Pointers and Suggestions on the Scientific Apply of Distinction Enhanced Ultrasound (CEUS): replace 2011 on non-hepatic purposes. Ultraschall Med Eur J Ultrasound. 2012;33:33–59.

    Article 
    CAS 

    Google Scholar
     

  • Mascilini F, Quagliozzi L, Bolomini G, Scambia G, Testa AC, Fagotti A. Intraoperative ultrasound by way of laparoscopic probe in fertility-sparing surgical procedure for borderline ovarian tumor recurrence. Ultrasound Obstet Gynecol. 2019;54:280–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruno M, De Blasis I, Marinucci B, Testa AC, Scambia G, Fagotti A. Laparoscopic intra-operative ultrasound-guided bilateral salpingo-oophorectomy in a BRCA2 mutated affected person. Int J Gynecol Most cancers. 2019;29:1448.

    Article 
    PubMed 

    Google Scholar
     

  • Ionescu S, Ionescu S. Intraoperative Ultrasound in Colorectal Surgical procedure [Internet]. IntechOpen; 2021 [cited 2022 Nov 23]. Out there from: https://www.intechopen.com/online-first/78975.

  • Fosko NK, Gribkova Y, Krupa Okay, Bs KJ, Moore D, Chen C, et al. The usage of intraoperative ultrasound throughout breast conserving surgical procedure. Clin Breast Most cancers. 2022;S1526-8209(22)00226-9.

  • Su H, Kwok Okay-W, Cleary Okay, Iordachita I, Cavusoglu MC, Desai JP, et al. State-of-the-art and future alternatives in MRI-guided robot-assisted surgical procedure and interventions. Proc IEEE. 2022;110:968–92.

    Article 

    Google Scholar
     

  • Black PM, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, et al. Growth and implementation of intraoperative magnetic resonance imaging and its neurosurgical purposes. Neurosurgery. 1997;41:831–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumae M, Nishiyama J, Kuroda Okay. Intraoperative MR imaging throughout glioma resection. Magn Reson Med Sci MRMS. 2022;21:148–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lell MM, Kachelrieß M. Latest and upcoming technological developments in computed tomography: excessive pace, low dose, deep studying, multienergy. Make investments Radiol. 2020;55:8–19.

    Article 
    PubMed 

    Google Scholar
     

  • Ashraf M, Choudhary N, Hussain SS, Kamboh UA, Ashraf N. Position of intraoperative computed tomography scanner in trendy neurosurgery—an early expertise. Surg Neurol Int. 2020;11:247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang H-Y, Chen Okay-A, Wen Y-W, Wen C-T, Pan Okay-T, Chiu C-H, et al. Efficacy and security of preoperative vs intraoperative computed tomography-guided lung tumor localization: a randomized managed trial. Entrance Surg. 2022. https://doi.org/10.3389/fsurg.2021.809908.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kok END, Eppenga R, Kuhlmann KFD, Groen HC, van Veen R, van Dieren JM, et al. Correct surgical navigation with real-time tumor monitoring in most cancers surgical procedure. Npj Summary Oncol. 2020;4:1–7.


    Google Scholar
     

  • Lusic H, Grinstaff MW. X-ray-computed tomography distinction brokers. Chem Rev. 2013;113:1641–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography distinction brokers: present standing and future views. Nanomed. 2012;7:257–69.

    Article 
    CAS 

    Google Scholar
     

  • Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor focusing on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10:7921–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H, Engblom C, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6:8692.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda H. The thirty fifth Anniversary of the Discovery of EPR Impact: a brand new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J Pers Med. 2021;11:229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao RT, Chen J, Zhao LH, Liu C, Wang OC, Huang GL, et al. Sentinel lymph node biopsy utilizing carbon nanoparticles for Chinese language sufferers with papillary thyroid microcarcinoma. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2012;38:718–24.

    CAS 

    Google Scholar
     

  • Curell A, Balibrea JM. Discovering lymph nodes with carbon nanoparticle suspension injection. JAMA Netw Open. 2022;5: e227759.

    Article 
    PubMed 

    Google Scholar
     

  • Koimtzis G, Stefanopoulos L, Alexandrou V, Tteralli N, Brooker V, Alawad AA, et al. The position of carbon nanoparticles in lymph node dissection and parathyroid gland preservation throughout surgical procedure for thyroid most cancers: a scientific overview and meta-analysis. Cancers. 2022;14:4016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudley NE. Methylene blue for fast identification of the parathyroids. Br Med J. 1971;3:680–1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Ma Okay, Zhang L, Madajewski B, Turker MZ, Gallazzi F, et al. Ultrasmall renally clearable silica nanoparticles goal prostate most cancers. ACS Appl Mater Interfaces. 2019;11:43879–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanoni DK, Stambuk HE, Madajewski B, Montero PH, Matsuura D, Busam KJ, et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized scientific trial. JAMA Netw Open. 2021;4: e211936.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, et al. Exploiting metabolic acidosis in strong cancers utilizing a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgical procedure. Nat Commun. 2020;11:3257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan R. The dawning period of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human part 1 co-clinical trial of a protease-activated fluorescent probe for imaging most cancers. Sci Transl Med. 2016;8:320ra4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: manufacturing, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable polymeric nanoparticles for drug supply to strong tumors. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.601626.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colombo F, Durigutto P, De Maso L, Biffi S, Belmonte B, Tripodo C, et al. Concentrating on CD34+ cells of the infected synovial endothelium by guided nanoparticles for the therapy of rheumatoid arthritis. J Autoimmun. 2019;103: 102288.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capolla S, Garrovo C, Zorzet S, Lorenzon A, Rampazzo E, Spretz R, et al. Focused tumor imaging of anti-CD20-polymeric nanoparticles developed for the analysis of B-cell malignancies. Int J Nanomedicine. 2015;10:4099–109.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bortot B, Mongiat M, Valencic E, Dal Monego S, Licastro D, Crosera M, et al. Nanotechnology-based cisplatin intracellular supply to boost chemo-sensitivity of ovarian most cancers. Int J Nanomedicine. 2020;15:4793–810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangtani A, Nag OK, Area LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the usage of comfortable and laborious nanoparticles for drug supply and imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9.

  • Wojtynek NE, Mohs AM. Picture-guided tumor surgical procedure: the rising position of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ong SY, Zhang C, Dong X, Yao SQ. Latest advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging. Angew Chem Int Ed. 2021;60:17797–809.

    Article 
    CAS 

    Google Scholar
     

  • Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and organic purposes. Chem Soc Rev. 2013;42:6620–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souchek JJ, Wojtynek NE, Payne WM, Holmes MB, Dutta S, Qi B, et al. Hyaluronic acid formulation of close to infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater. 2018;75:323–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill TK, Kelkar SS, Wojtynek NE, Souchek JJ, Payne WM, Stumpf Okay, et al. Close to infrared fluorescent nanoparticles derived from hyaluronic acid enhance tumor distinction for image-guided surgical procedure. Theranostics. 2016;6:2314–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, et al. Nanoparticle formulation of indocyanine inexperienced improves image-guided surgical procedure in a murine mannequin of breast most cancers. Mol Imaging Biol. 2020;22:891–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Li Y, Hu X, Zhao H, Ji Y, Chen L, et al. “Twin Lock-and-Key”-controlled nanoprobes for ultrahigh particular fluorescence imaging within the second near-infrared window. Adv Mater. 2018;30:1801140.

    Article 

    Google Scholar
     

  • He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, et al. A scientific trial of super-stable homogeneous lipiodol-nanoICG formulation-guided exact fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology. 2022;20:250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Y, Dai H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic methods. Nano Res. 2020;13:1281–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, et al. Excessive-precision tumor resection right down to few-cell stage guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci. 2022;119:e2123111119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao T, Huang G, Li Y, Yang S, Ramezani S, Lin Z, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgical procedure. Nat Biomed Eng. 2016;1:0006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon HY, Jeon S, You DG, Park JH, Kwon IC, Koo H, et al. Inorganic nanoparticles for image-guided remedy. Bioconjug Chem. 2017;28:124–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, et al. Multifunctional gold nanoparticles in most cancers analysis and therapy. Int J Nanomedicine. 2022;17:2041–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Kiessling F, Lammers T, Pallares RM. Scientific translation of gold nanoparticles. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/s13346-022-01232-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colombé C, Le Guével X, Martin-Serrano A, Henry M, Porret E, Comby-Zerbino C, et al. Gold nanoclusters as a distinction agent for image-guided surgical procedure of head and neck tumors. Nanomedicine Nanotechnol Biol Med. 2019;20: 102011.

    Article 

    Google Scholar
     

  • Singh M, Nabavi E, Zhou Y, Gallina ME, Zhao H, Ruenraroengsak P, et al. Laparoscopic fluorescence image-guided photothermal remedy enhances most cancers analysis and therapy. Nanotheranostics. 2019;3:89–102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimm MA, Shevtsov M, Werner C, Sievert W, Zhiyuan W, Schoppe O, et al. Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancers. 2020;12:1331.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marekova D, Turnovcova Okay, Sursal TH, Gandhi CD, Jendelova P, Jhanwar-Uniyal M. Potential for therapy of glioblastoma: new elements of superparamagnetic iron oxide nanoparticles. Anticancer Res. 2020;40:5989–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winter A, Kowald T, Paulo TS, Goos P, Engels S, Gerullis H, et al. Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate most cancers utilizing superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2018;13:6689–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azargoshasb S, Molenaar L, Rosiello G, Buckle T, van Willigen DM, van de Loosdrecht MM, et al. Advancing intraoperative magnetic tracing utilizing 3D freehand magnetic particle imaging. Int J Comput Help Radiol Surg. 2022;17:211–8.

    Article 
    PubMed 

    Google Scholar
     

  • Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, et al. Fluorescent silica nanoparticles with environment friendly urinary excretion for nanomedicine. Nano Lett. 2009;9:442–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Wang P, Lou Okay, Dang Y, Tian H, Li Y, et al. Biodegradable nanoprobe for NIR-II fluorescence image-guided surgical procedure and enhanced breast most cancers radiotherapy efficacy. Adv Sci. 2022;9:2104728.

    Article 
    CAS 

    Google Scholar
     

  • Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux J-C, et al. Quantitative imaging of lymphatic perform with liposomal indocyanine inexperienced. Most cancers Res. 2010;70:7053–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos Okay, et al. Dynamic imaging of PEGylated indocyanine inexperienced (ICG) liposomes inside the tumor microenvironment utilizing multi-spectral optoacoustic tomography (MSOT). Biomaterials. 2015;37:415–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan T, Shang W, Li H, Yang X, Fang C, Tian J, et al. From detection to resection: photoacoustic tomography and surgical procedure steering with indocyanine inexperienced loaded gold [email protected] core-shell nanoparticles in liver most cancers. Bioconjug Chem. 2017;28:1221–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murgia S, Biffi S, Mezzenga R. Latest advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci. 2020;48:28–39.

    Article 
    CAS 

    Google Scholar
     

  • Fornasier M, Biffi S, Bortot B, Macor P, Manhart A, Wurm FR, et al. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with decreased cytotoxicity. J Colloid Interface Sci. 2020;580:286–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Victorelli FD, Salvati Manni L, Biffi S, Bortot B, Buzzá HH, Lutz-Bueno V, et al. Potential of curcumin-loaded cubosomes for topical therapy of cervical most cancers. J Colloid Interface Sci. 2022;620:419–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, et al. Hybrid theranostic cubosomes for environment friendly NIR-induced photodynamic remedy. ACS Nano. 2022;16:5427.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarighatnia A, Reza Fouladi M, Nader N, Aghanejad A, Ghadiri H. Latest tendencies of distinction brokers in ultrasound imaging: a overview of the classifications and purposes. Mater Adv. 2022;3:3726–41.

    Article 
    CAS 

    Google Scholar
     

  • Zeng F, Du M, Chen Z. Nanosized distinction brokers in ultrasound molecular imaging. Entrance Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.758084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perera RH, de Leon A, Wang X, Wang Y, Ramamurthy G, Peiris P, et al. Actual time ultrasound molecular imaging of prostate most cancers with PSMA-targeted nanobubbles. Nanomedicine Nanotechnol Biol Med. 2020;28: 102213.

    Article 
    CAS 

    Google Scholar
     

  • Gao X, Guo D, Mao X, Shan X, He X, Yu C. Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with excessive stability for long-term ultrasound imaging in vivo. Nanoscale. 2021;13:5333–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansen ML, Perera R, Abenojar E, Wang X, Vincent J, Exner AA, et al. Ultrasound-based molecular imaging of tumors with PTPmu biomarker-targeted nanobubble distinction brokers. Int J Mol Sci. 2021;22:1983.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo R, Xu N, Liu Y, Ling G, Yu J, Zhang P. Useful ultrasound-triggered phase-shift perfluorocarbon nanodroplets for most cancers remedy. Ultrasound Med Biol. 2021;47:2064–79.

    Article 
    PubMed 

    Google Scholar
     

  • Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid Interface Sci. 2021;53: 101427.

    Article 
    CAS 

    Google Scholar
     

  • Lynn JG, Zwemer RL, Chick AJ, Miller AE. A brand new technique for the technology and use of centered ultrasound in experimental biology. J Gen Physiol. 1942;26:179–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L-Y, Chao X, Yang B-S, Wang G-G, Zou J-Z, Wu F. Section-shift perfluoropentane nanoemulsions improve pulsed high-intensity centered ultrasound ablation in an remoted perfused liver system and their potential worth for most cancers remedy. J Ultrasound Med. 2022;41:107–21.

    Article 
    PubMed 

    Google Scholar
     

  • Ovejero Paredes Okay, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, et al. Multifunctional silica-based nanoparticles with managed launch of organotin metallodrug for focused theranosis of breast most cancers. Cancers. 2020;12:E187.

    Article 

    Google Scholar
     

  • Fang Y, Lin W, Zhou Y, Wang W, Liu X. Analysis of tumor resection impact of colour Doppler ultrasound positioning guided breast-conserving surgical procedure utilizing nano-contrast agent. Cell Mol Biol. 2022;68:365–73.

    Article 
    PubMed 

    Google Scholar
     

  • Miyasato DL, Mohamed AW, Zavaleta C. A path towards the scientific translation of nano-based imaging distinction brokers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13: e1721.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori Okay. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a overview. J Management Launch. 2000;65:271–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments