World Burden of Illness 2019 Most cancers Collaboration. Most cancers incidence, mortality, years of life misplaced, years lived with incapacity, and disability-adjusted life years for 29 most cancers teams from 2010 to 2019: a scientific evaluation for the worldwide burden of illness research 2019. JAMA Oncol. 2022;8:420–44.
Sankar PL, Parker LS. The Precision Medication Initiative’s All of Us Analysis Program: an agenda for analysis on its moral, authorized, and social points. Genet Med. 2017;19:743–50.
Tringale KR, Pang J, Nguyen QT. Picture-guided surgical procedure in most cancers: a method to scale back incidence of constructive surgical margins. Wiley Interdiscip Rev Syst Biol Med. 2018;10: e1412.
Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, et al. Optimistic surgical margins within the 10 most typical strong cancers. Sci Rep. 2018;8:5686.
Miyamoto H. Intraoperative pathology session throughout urological surgical procedure: influence on closing margin standing and pitfalls of frozen part analysis. Pathol Int. 2021;71:567–80.
Yoo T-Okay, Kang Y-J, Jeong J, Music J-Y, Kang SH, Lee HY, et al. A randomized managed trial for doing vs omitting intraoperative frozen part biopsy for resection margin standing in chosen sufferers present process breast-conserving surgical procedure (OFF-MAP Trial). J Breast Most cancers. 2021;24:569–77.
Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, et al. Intraoperative imaging in pathology-assisted surgical procedure. Nat Biomed Eng. 2021;6:503.
Hussain T, Nguyen QT. Molecular imaging for most cancers analysis and surgical procedure. Adv Drug Deliv Rev. 2014;66:90–100.
Rowe SP, Pomper MG. Molecular imaging in oncology: present influence and future instructions. CA Most cancers J Clin. 2021;72:333.
Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided most cancers surgical procedure: from present fluorescence molecular imaging strategies to future multi-modality imaging expertise. Theranostics. 2014;4:1072–84.
Pogue BW, Rosenthal EL, Achilefu S, van Dam GM. Perspective overview of what’s wanted for molecular-specific fluorescence-guided surgical procedure. J Biomed Decide. 2018;23:1–9.
Schouw HM, Huisman LA, Janssen YF, Slart RHJA, Borra RJH, Willemsen ATM, et al. Focused optical fluorescence imaging: a meta-narrative overview and future views. Eur J Nucl Med Mol Imaging. 2021;48:4272–92.
Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, Linssen MD, Steinkamp PJ, de Visscher SAHJ, et al. Fluorescence-guided imaging for resection margin analysis in head and neck most cancers sufferers utilizing cetuximab-800CW: a quantitative dose-escalation research. Theranostics. 2020;10:3994–4005.
Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, et al. Molecular fluorescence-guided surgical procedure of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility research. Lancet Gastroenterol Hepatol. 2016;1:283–90.
Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively focused nanocarriers for drug supply to most cancers cells. Professional Opin Drug Deliv. 2019;16:481–96.
Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Functions of nanoparticles in most cancers drugs and past: optical and multimodal in vivo imaging, tissue focusing on and drug supply. Professional Opin Drug Deliv. 2015;12:1837–49.
Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and remedy of ovarian most cancers: scientific utility of nanoparticles and future views. Theranostics. 2018;8:4279–94.
de Gooyer JM, Elekonawo FMK, Bremers AJA, Boerman OC, Aarntzen EHJG, de Reuver PR, et al. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgical procedure for peritoneal metastases of colorectal origin. Nat Commun. 2022;13:2621.
Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, Rovers MM. Novel imaging strategies for intraoperative margin evaluation in surgical oncology: a scientific overview. Int J Most cancers. 2021;149:635–45.
Keereweer S, Van Driel PBAA, Snoeks TJA, Kerrebijn JDF, Baatenburgde Jong RJ, Vahrmeijer AL, et al. Optical image-guided most cancers surgical procedure: challenges and limitations. Clin Most cancers Res. 2013;19:3745–54.
Dhawan AP, D’Alessandro B, Fu X. Optical imaging modalities for biomedical purposes. IEEE Rev Biomed Eng. 2010;3:69–92.
Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic technique for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110:E2288-2297.
Benson JR, van Leeuwen FWB, Sugie T. Editorial: state-of-the-art fluorescence image-guided surgical procedure: present and future developments. Entrance Oncol. 2021;11: 776832.
Likelihood B. Close to-infrared photos utilizing steady, phase-modulated, and pulsed mild with quantitation of blood and blood oxygenation. Ann N Y Acad Sci. 1998;838:29–45.
Ekman M, Girnyi S, Marano L, Roviello F, Chand M, Diana M, et al. Close to-infrared fluorescence image-guided surgical procedure in esophageal and gastric most cancers operations. Surg Innov. 2022;15533506211073416.
Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging methods for image-guided interventions. Nanophotonics. 2019;8:99–116.
Nakamura Y, Takada M, Imamura M, Higami A, Jiaxi H, Fujino M, et al. Usefulness and prospects of sentinel lymph node biopsy for sufferers with breast most cancers utilizing the medical imaging projection system. Entrance Oncol. 2021;11: 674419.
Boussedra S, Benoit L, Koual M, Bentivegna E, Nguyen-Xuan H-T, Bats A-S, et al. Fluorescence guided surgical procedure to enhance peritoneal cytoreduction in epithelial ovarian most cancers: a scientific overview of accessible information. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2022;48:1217–23.
Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME. Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma results in larger extent of resection with higher outcomes: a scientific overview. J Neurooncol. 2022;156:233–56.
Ahrens LC, Krabbenhøft MG, Hansen RW, Mikic N, Pedersen CB, Poulsen FR, et al. Impact of 5-aminolevulinic acid and sodium fluorescein on the extent of resection in high-grade gliomas and mind metastasis. Cancers. 2022;14:617.
Rajakumar T, Yassin M, Musbahi O, Harris E, Lopez JF, Bryant RJ, et al. Use of intraoperative fluorescence to boost robot-assisted radical prostatectomy. Future Oncol Lond Engl. 2021;17:1083–95.
van Keulen S, Nishio N, Fakurnejad S, Birkeland A, Martin BA, Lu G, et al. The scientific utility of fluorescence-guided surgical procedure in head and neck most cancers. J Nucl Med. 2019;60:758–63.
Buda A, Di Martino G, Vecchione F, Bussi B, Dell’Anna T, Palazzi S, et al. Optimizing methods for sentinel lymph node mapping in early-stage cervical and endometrial most cancers: comparability of real-time fluorescence with indocyanine inexperienced and methylene blue. Int J Gynecol Most cancers. 2015;25:1513–8.
Kan X, Zhang F, Zhou G, Ji H, Monsky W, Ingraham C, et al. Interventional real-time optical imaging steering for full tumor ablation. Proc Natl Acad Sci U S A. 2021;118: e2113028118.
Azargoshasb S, Boekestijn I, Roestenberg M, KleinJan GH, van der Hage JA, van der Poel HG, et al. Quantifying the influence of signal-to-background ratios on surgical discrimination of fluorescent lesions. Mol Imaging Biol. 2022;25:180.
Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS, Lingg JGP, et al. Focused multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat Strategies. 2022;19:353–8.
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology. 2017;28: 055102.
Biffi S, Garrovo C, Macor P, Tripodo C, Zorzet S, Secco E, et al. In vivo biodistribution and lifelong evaluation of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft utilizing time-domain near-infrared optical imaging. Mol Imaging. 2008;7:272–82.
Pal R, Hom M, van den Berg NS, Lwin T, Lee Y-J, Prilutskiy A, et al. First scientific outcomes of fluorescence lifetime-enhanced tumor imaging utilizing receptor focused fluorescent probes. Clin Most cancers Res. 2022;clincanres.3429.2021.
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, et al. The complementary worth of intraoperative fluorescence imaging and Raman spectroscopy for most cancers surgical procedure: combining the incompatibles. Eur J Nucl Med Mol Imaging. 2022;49:2364.
Kouri MA, Spyratou E, Karnachoriti M, Kalatzis D, Danias N, Arkadopoulos N, et al. Raman spectroscopy: a personalised decision-making device on clinicians’ palms for in situ most cancers analysis and surgical procedure steering. Cancers. 2022;14:1144.
Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, et al. Detection of human mind tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7:309ra163.
Hollon TC, Lewis S, Pandian B, Niknafs YS, Garrard MR, Garton H, et al. Speedy intraoperative analysis of pediatric mind tumors utilizing stimulated Raman histology. Most cancers Res. 2018;78:278–89.
Jermyn M, Mok Okay, Mercier J, Desroches J, Pichette J, Saint-Arnaud Okay, et al. Intraoperative mind most cancers detection with Raman spectroscopy in people. Sci Transl Med. 2015;7:274ra19.
Kumamoto Y, Harada Y, Tanaka H, Takamatsu T. Speedy and correct peripheral nerve imaging by multipoint Raman spectroscopy. Sci Rep. 2017;7:845.
Minamikawa T, Harada Y, Takamatsu T. Ex vivo peripheral nerve detection of rats by spontaneous Raman spectroscopy. Sci Rep. 2015;5:17165.
Wang LV, Yao J. A sensible information to photoacoustic tomography within the life sciences. Nat Strategies. 2016;13:627–38.
Ntziachristos V, Razansky D. Molecular imaging via multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110:2783–94.
Karthikesh MS, Yang X. Photoacoustic image-guided interventions. Exp Biol Med. 2020;245:330–41.
Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Lehy J, et al. Metastatic standing of sentinel lymph nodes in melanoma decided noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7:317ra199.
Vonk J, Kukačka J, Steinkamp PJ, de Wit JG, Voskuil FJ, Hooghiemstra WTR, et al. Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral most cancers sufferers utilizing an EGFR-targeted distinction agent and intrinsic tissue distinction: a proof-of-concept research. Photoacoustics. 2022;26: 100362.
Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, et al. Multispectral optoacoustic tomography for evaluation of Crohn’s illness exercise. N Engl J Med. 2017;376:1292–4.
Goh Y, Balasundaram G, Tan HM, Putti TC, Tang SW, Ng CWQ, et al. Biochemical “decoding” of breast ultrasound photos with optoacoustic tomography fusion: first-in-human show of lipid and collagen indicators on breast ultrasound. Photoacoustics. 2022;27: 100377.
Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Corridor NC, et al. A complete overview of radioguided surgical procedure utilizing gamma detection probe expertise. World J Surg Oncol. 2009;7:11.
Pashazadeh A, Friebe M. Radioguided surgical procedure: bodily ideas and an replace on technological developments. Biomed Tech (Berl). 2020;65:1–10.
Lindsley CW, Müller CE, Bongarzone S. Diagnostic and therapeutic radiopharmaceuticals. J Med Chem. 2022;65:12497–9.
Mariani G, Vaiano A, Nibale O, Rubello D. Is the “very best” gamma-probe for intraoperative radioguided surgical procedure conceivable? J Nucl Med. 2005;46:388–90.
Harris CC, Bigelow RR, Francis JE, Kelley GG, Bell PR. A CsI(Tl)-crystal surgical scintillation probe. Nucleon US Ceased Publ [Internet]. 1956 [cited 2022 Nov 14]. Out there from: https://www.osti.gov/biblio/4366797.
Borgstein PJ, Pijpers R, Comans EF, van Diest PJ, Growth RP, Meijer S. Sentinel lymph node biopsy in breast most cancers: pointers and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg. 1998;186:275–83.
Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.
Collamati F, Bocci V, Castellucci P, De Simoni M, Fanti S, Faccini R, et al. Radioguided surgical procedure with β radiation: a novel utility with Ga68. Sci Rep. 2018;8:16171.
Collamati F, Pepe A, Bellini F, Bocci V, Chiodi G, Cremonesi M, et al. Towards radioguided surgical procedure with β- decays: uptake of a somatostatin analogue, DOTATOC, in meningioma and high-grade glioma. J Nucl Med. 2015;56:3–8.
Solfaroli Camillocci E, Schiariti M, Bocci V, Carollo A, Chiodi G, Colandrea M, et al. First ex vivo validation of a radioguided surgical procedure method with β-radiation. Phys Medica PM Int J Devoted Appl Phys Med Biol. 2016;32:1139–44.
Baier J, Rix A, Kiessling F. Molecular ultrasound imaging. Latest Outcomes Most cancers Res Fortschritte Krebsforsch Progres Dans Rech Sur Most cancers. 2020;216:509–31.
Del Bene M, Perin A, Casali C, Legnani F, Saladino A, Mattei L, et al. Superior ultrasound imaging in glioma surgical procedure: past gray-scale B-mode. Entrance Oncol. 2018;8:576.
Giammalva GR, Ferini G, Musso S, Salvaggio G, Pino MA, Gerardi RM, et al. Intraoperative ultrasound: rising expertise and novel purposes in mind tumor surgical procedure. Entrance Oncol. 2022;12: 818446.
Moiraghi A, Prada F, Delaidelli A, Guatta R, Could A, Bartoli A, et al. Navigated intraoperative 2-dimensional ultrasound in high-grade glioma surgical procedure: influence on extent of resection and affected person end result. Oper Neurosurg Hagerstown Md. 2020;18:363–73.
Piscaglia F, Nolsøe C, Dietrich CF, Cosgrove DO, Gilja OH, Nielsen MB, et al. The EFSUMB Pointers and Suggestions on the Scientific Apply of Distinction Enhanced Ultrasound (CEUS): replace 2011 on non-hepatic purposes. Ultraschall Med Eur J Ultrasound. 2012;33:33–59.
Mascilini F, Quagliozzi L, Bolomini G, Scambia G, Testa AC, Fagotti A. Intraoperative ultrasound by way of laparoscopic probe in fertility-sparing surgical procedure for borderline ovarian tumor recurrence. Ultrasound Obstet Gynecol. 2019;54:280–2.
Bruno M, De Blasis I, Marinucci B, Testa AC, Scambia G, Fagotti A. Laparoscopic intra-operative ultrasound-guided bilateral salpingo-oophorectomy in a BRCA2 mutated affected person. Int J Gynecol Most cancers. 2019;29:1448.
Ionescu S, Ionescu S. Intraoperative Ultrasound in Colorectal Surgical procedure [Internet]. IntechOpen; 2021 [cited 2022 Nov 23]. Out there from: https://www.intechopen.com/online-first/78975.
Fosko NK, Gribkova Y, Krupa Okay, Bs KJ, Moore D, Chen C, et al. The usage of intraoperative ultrasound throughout breast conserving surgical procedure. Clin Breast Most cancers. 2022;S1526-8209(22)00226-9.
Su H, Kwok Okay-W, Cleary Okay, Iordachita I, Cavusoglu MC, Desai JP, et al. State-of-the-art and future alternatives in MRI-guided robot-assisted surgical procedure and interventions. Proc IEEE. 2022;110:968–92.
Black PM, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, et al. Growth and implementation of intraoperative magnetic resonance imaging and its neurosurgical purposes. Neurosurgery. 1997;41:831–42.
Matsumae M, Nishiyama J, Kuroda Okay. Intraoperative MR imaging throughout glioma resection. Magn Reson Med Sci MRMS. 2022;21:148–67.
Lell MM, Kachelrieß M. Latest and upcoming technological developments in computed tomography: excessive pace, low dose, deep studying, multienergy. Make investments Radiol. 2020;55:8–19.
Ashraf M, Choudhary N, Hussain SS, Kamboh UA, Ashraf N. Position of intraoperative computed tomography scanner in trendy neurosurgery—an early expertise. Surg Neurol Int. 2020;11:247.
Fang H-Y, Chen Okay-A, Wen Y-W, Wen C-T, Pan Okay-T, Chiu C-H, et al. Efficacy and security of preoperative vs intraoperative computed tomography-guided lung tumor localization: a randomized managed trial. Entrance Surg. 2022. https://doi.org/10.3389/fsurg.2021.809908.
Kok END, Eppenga R, Kuhlmann KFD, Groen HC, van Veen R, van Dieren JM, et al. Correct surgical navigation with real-time tumor monitoring in most cancers surgical procedure. Npj Summary Oncol. 2020;4:1–7.
Lusic H, Grinstaff MW. X-ray-computed tomography distinction brokers. Chem Rev. 2013;113:1641–66.
Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography distinction brokers: present standing and future views. Nanomed. 2012;7:257–69.
Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.
Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor focusing on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10:7921–4.
Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H, Engblom C, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun. 2015;6:8692.
Maeda H. The thirty fifth Anniversary of the Discovery of EPR Impact: a brand new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J Pers Med. 2021;11:229.
Hao RT, Chen J, Zhao LH, Liu C, Wang OC, Huang GL, et al. Sentinel lymph node biopsy utilizing carbon nanoparticles for Chinese language sufferers with papillary thyroid microcarcinoma. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2012;38:718–24.
Curell A, Balibrea JM. Discovering lymph nodes with carbon nanoparticle suspension injection. JAMA Netw Open. 2022;5: e227759.
Koimtzis G, Stefanopoulos L, Alexandrou V, Tteralli N, Brooker V, Alawad AA, et al. The position of carbon nanoparticles in lymph node dissection and parathyroid gland preservation throughout surgical procedure for thyroid most cancers: a scientific overview and meta-analysis. Cancers. 2022;14:4016.
Dudley NE. Methylene blue for fast identification of the parathyroids. Br Med J. 1971;3:680–1.
Chen F, Ma Okay, Zhang L, Madajewski B, Turker MZ, Gallazzi F, et al. Ultrasmall renally clearable silica nanoparticles goal prostate most cancers. ACS Appl Mater Interfaces. 2019;11:43879–87.
Zanoni DK, Stambuk HE, Madajewski B, Montero PH, Matsuura D, Busam KJ, et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized scientific trial. JAMA Netw Open. 2021;4: e211936.
Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, et al. Exploiting metabolic acidosis in strong cancers utilizing a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgical procedure. Nat Commun. 2020;11:3257.
Duncan R. The dawning period of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.
Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human part 1 co-clinical trial of a protease-activated fluorescent probe for imaging most cancers. Sci Transl Med. 2016;8:320ra4.
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: manufacturing, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731.
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, et al. Biodegradable polymeric nanoparticles for drug supply to strong tumors. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.601626.
Colombo F, Durigutto P, De Maso L, Biffi S, Belmonte B, Tripodo C, et al. Concentrating on CD34+ cells of the infected synovial endothelium by guided nanoparticles for the therapy of rheumatoid arthritis. J Autoimmun. 2019;103: 102288.
Capolla S, Garrovo C, Zorzet S, Lorenzon A, Rampazzo E, Spretz R, et al. Focused tumor imaging of anti-CD20-polymeric nanoparticles developed for the analysis of B-cell malignancies. Int J Nanomedicine. 2015;10:4099–109.
Bortot B, Mongiat M, Valencic E, Dal Monego S, Licastro D, Crosera M, et al. Nanotechnology-based cisplatin intracellular supply to boost chemo-sensitivity of ovarian most cancers. Int J Nanomedicine. 2020;15:4793–810.
Sangtani A, Nag OK, Area LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the usage of comfortable and laborious nanoparticles for drug supply and imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9.
Wojtynek NE, Mohs AM. Picture-guided tumor surgical procedure: the rising position of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1624.
Ong SY, Zhang C, Dong X, Yao SQ. Latest advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging. Angew Chem Int Ed. 2021;60:17797–809.
Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and organic purposes. Chem Soc Rev. 2013;42:6620–33.
Souchek JJ, Wojtynek NE, Payne WM, Holmes MB, Dutta S, Qi B, et al. Hyaluronic acid formulation of close to infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater. 2018;75:323–33.
Hill TK, Kelkar SS, Wojtynek NE, Souchek JJ, Payne WM, Stumpf Okay, et al. Close to infrared fluorescent nanoparticles derived from hyaluronic acid enhance tumor distinction for image-guided surgical procedure. Theranostics. 2016;6:2314–28.
Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, et al. Nanoparticle formulation of indocyanine inexperienced improves image-guided surgical procedure in a murine mannequin of breast most cancers. Mol Imaging Biol. 2020;22:891–903.
Tang Y, Li Y, Hu X, Zhao H, Ji Y, Chen L, et al. “Twin Lock-and-Key”-controlled nanoprobes for ultrahigh particular fluorescence imaging within the second near-infrared window. Adv Mater. 2018;30:1801140.
He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, et al. A scientific trial of super-stable homogeneous lipiodol-nanoICG formulation-guided exact fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology. 2022;20:250.
Zhong Y, Dai H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic methods. Nano Res. 2020;13:1281–94.
Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, et al. Excessive-precision tumor resection right down to few-cell stage guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci. 2022;119:e2123111119.
Zhao T, Huang G, Li Y, Yang S, Ramezani S, Lin Z, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgical procedure. Nat Biomed Eng. 2016;1:0006.
Yoon HY, Jeon S, You DG, Park JH, Kwon IC, Koo H, et al. Inorganic nanoparticles for image-guided remedy. Bioconjug Chem. 2017;28:124–34.
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, et al. Multifunctional gold nanoparticles in most cancers analysis and therapy. Int J Nanomedicine. 2022;17:2041–67.
Zhang R, Kiessling F, Lammers T, Pallares RM. Scientific translation of gold nanoparticles. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/s13346-022-01232-4.
Colombé C, Le Guével X, Martin-Serrano A, Henry M, Porret E, Comby-Zerbino C, et al. Gold nanoclusters as a distinction agent for image-guided surgical procedure of head and neck tumors. Nanomedicine Nanotechnol Biol Med. 2019;20: 102011.
Singh M, Nabavi E, Zhou Y, Gallina ME, Zhao H, Ruenraroengsak P, et al. Laparoscopic fluorescence image-guided photothermal remedy enhances most cancers analysis and therapy. Nanotheranostics. 2019;3:89–102.
Kimm MA, Shevtsov M, Werner C, Sievert W, Zhiyuan W, Schoppe O, et al. Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancers. 2020;12:1331.
Marekova D, Turnovcova Okay, Sursal TH, Gandhi CD, Jendelova P, Jhanwar-Uniyal M. Potential for therapy of glioblastoma: new elements of superparamagnetic iron oxide nanoparticles. Anticancer Res. 2020;40:5989–94.
Winter A, Kowald T, Paulo TS, Goos P, Engels S, Gerullis H, et al. Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate most cancers utilizing superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2018;13:6689–98.
Azargoshasb S, Molenaar L, Rosiello G, Buckle T, van Willigen DM, van de Loosdrecht MM, et al. Advancing intraoperative magnetic tracing utilizing 3D freehand magnetic particle imaging. Int J Comput Help Radiol Surg. 2022;17:211–8.
Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, et al. Fluorescent silica nanoparticles with environment friendly urinary excretion for nanomedicine. Nano Lett. 2009;9:442–8.
Yang R, Wang P, Lou Okay, Dang Y, Tian H, Li Y, et al. Biodegradable nanoprobe for NIR-II fluorescence image-guided surgical procedure and enhanced breast most cancers radiotherapy efficacy. Adv Sci. 2022;9:2104728.
Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux J-C, et al. Quantitative imaging of lymphatic perform with liposomal indocyanine inexperienced. Most cancers Res. 2010;70:7053–62.
Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos Okay, et al. Dynamic imaging of PEGylated indocyanine inexperienced (ICG) liposomes inside the tumor microenvironment utilizing multi-spectral optoacoustic tomography (MSOT). Biomaterials. 2015;37:415–24.
Guan T, Shang W, Li H, Yang X, Fang C, Tian J, et al. From detection to resection: photoacoustic tomography and surgical procedure steering with indocyanine inexperienced loaded gold [email protected] core-shell nanoparticles in liver most cancers. Bioconjug Chem. 2017;28:1221–8.
Murgia S, Biffi S, Mezzenga R. Latest advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr Opin Colloid Interface Sci. 2020;48:28–39.
Fornasier M, Biffi S, Bortot B, Macor P, Manhart A, Wurm FR, et al. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with decreased cytotoxicity. J Colloid Interface Sci. 2020;580:286–97.
Victorelli FD, Salvati Manni L, Biffi S, Bortot B, Buzzá HH, Lutz-Bueno V, et al. Potential of curcumin-loaded cubosomes for topical therapy of cervical most cancers. J Colloid Interface Sci. 2022;620:419–30.
Bazylińska U, Wawrzyńczyk D, Kulbacka J, Picci G, Manni LS, Handschin S, et al. Hybrid theranostic cubosomes for environment friendly NIR-induced photodynamic remedy. ACS Nano. 2022;16:5427.
Tarighatnia A, Reza Fouladi M, Nader N, Aghanejad A, Ghadiri H. Latest tendencies of distinction brokers in ultrasound imaging: a overview of the classifications and purposes. Mater Adv. 2022;3:3726–41.
Zeng F, Du M, Chen Z. Nanosized distinction brokers in ultrasound molecular imaging. Entrance Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe.2021.758084.
Perera RH, de Leon A, Wang X, Wang Y, Ramamurthy G, Peiris P, et al. Actual time ultrasound molecular imaging of prostate most cancers with PSMA-targeted nanobubbles. Nanomedicine Nanotechnol Biol Med. 2020;28: 102213.
Gao X, Guo D, Mao X, Shan X, He X, Yu C. Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with excessive stability for long-term ultrasound imaging in vivo. Nanoscale. 2021;13:5333–43.
Johansen ML, Perera R, Abenojar E, Wang X, Vincent J, Exner AA, et al. Ultrasound-based molecular imaging of tumors with PTPmu biomarker-targeted nanobubble distinction brokers. Int J Mol Sci. 2021;22:1983.
Guo R, Xu N, Liu Y, Ling G, Yu J, Zhang P. Useful ultrasound-triggered phase-shift perfluorocarbon nanodroplets for most cancers remedy. Ultrasound Med Biol. 2021;47:2064–79.
Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid Interface Sci. 2021;53: 101427.
Lynn JG, Zwemer RL, Chick AJ, Miller AE. A brand new technique for the technology and use of centered ultrasound in experimental biology. J Gen Physiol. 1942;26:179–93.
Zhao L-Y, Chao X, Yang B-S, Wang G-G, Zou J-Z, Wu F. Section-shift perfluoropentane nanoemulsions improve pulsed high-intensity centered ultrasound ablation in an remoted perfused liver system and their potential worth for most cancers remedy. J Ultrasound Med. 2022;41:107–21.
Ovejero Paredes Okay, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, et al. Multifunctional silica-based nanoparticles with managed launch of organotin metallodrug for focused theranosis of breast most cancers. Cancers. 2020;12:E187.
Fang Y, Lin W, Zhou Y, Wang W, Liu X. Analysis of tumor resection impact of colour Doppler ultrasound positioning guided breast-conserving surgical procedure utilizing nano-contrast agent. Cell Mol Biol. 2022;68:365–73.
Miyasato DL, Mohamed AW, Zavaleta C. A path towards the scientific translation of nano-based imaging distinction brokers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13: e1721.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori Okay. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a overview. J Management Launch. 2000;65:271–84.