The problem
Quantity is a palindrome if it is the same as the quantity with digits in reversed order. For instance, 5
, 44
, 171
, 4884
are palindromes, and 43
, 194
, 4773
are usually not.
Write a operate which takes a constructive integer and returns the variety of particular steps wanted to acquire a palindrome. The particular step is: “reverse the digits, and add to the unique quantity”. If the ensuing quantity just isn’t a palindrome, repeat the process with the sum till the ensuing quantity is a palindrome.
If the enter quantity is already a palindrome, the variety of steps is “.
All inputs are assured to have a ultimate palindrome which doesn’t overflow lengthy
.
Instance
For instance, begin with 87
:
87 + 78 = 165 - step 1, not a palindrome
165 + 561 = 726 - step 2, not a palindrome
726 + 627 = 1353 - step 3, not a palindrome
1353 + 3531 = 4884 - step 4, palindrome!
4884
is a palindrome and we would have liked 4
steps to acquire it, so reply for 87
is 4
.
Additional information
Some fascinating data on the issue might be discovered on this Wikipedia article on Lychrel numbers.
The answer in Java code
Possibility 1:
public class Palindromes {
public static int palindromeChainLength (lengthy n) {
String ns = "" + n, nrs = "" + new StringBuilder(ns).reverse();
return ns.equals(nrs) ? 0 : 1 + palindromeChainLength(n + Lengthy.valueOf(nrs));
}
}
Possibility 2:
public class Palindromes {
public static int palindromeChainLength(lengthy n) {
int step = 0;
whereas (n != reverseNumber(n)) {
n = n + reverseNumber(n);
step++;
}
return step;
}
non-public static lengthy reverseNumber(lengthy n) {
char[] quantity = String.valueOf(n).toCharArray();
String reverseNumber = "";
for (int depend = quantity.size - 1; depend >= 0; count--) {
reverseNumber = reverseNumber + quantity[count];
}
return Lengthy.parseLong(reverseNumber);
}
}
Possibility 3:
public class Palindromes {
public static int palindromeChainLength (lengthy n) {
String s = String.valueOf(n);
String r = new StringBuilder(String.valueOf(n)).reverse().toString();
if (s.equals(r)) return 0;
return 1 + palindromeChainLength(n + Lengthy.parseLong(r));
}
}
Check circumstances to validate our answer
import org.junit.Check;
import static org.junit.Assert.*;
public class PalindromesTest {
@Check
public void testPalindrome() {
assertEquals(0, Palindromes.palindromeChainLength(1));
assertEquals(0, Palindromes.palindromeChainLength(88));
assertEquals(0, Palindromes.palindromeChainLength(393));
}
@Check
public void testNonPalindrome() {
assertEquals(1, Palindromes.palindromeChainLength(10));
assertEquals(1, Palindromes.palindromeChainLength(134));
assertEquals(4, Palindromes.palindromeChainLength(87));
assertEquals(7, Palindromes.palindromeChainLength(2897));
assertEquals(24, Palindromes.palindromeChainLength(89));
}
}