Tuesday, March 21, 2023
HomeNanotechnologyOligomer nanoparticle launch from polylactic acid plastics catalysed by intestine enzymes triggers...

Oligomer nanoparticle launch from polylactic acid plastics catalysed by intestine enzymes triggers acute irritation


  • Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds considerably diminished by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic particles all through the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).

    Article 

    Google Scholar
     

  • Koelmans, A. A. et al. Threat evaluation of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).

    Article 

    Google Scholar
     

  • Li, D. et al. Microplastic launch from the degradation of polypropylene feeding bottles throughout toddler method preparation. Nat. Meals 1, 746–754 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Senathirajah, Okay. et al. Estimation of the mass of microplastics ingested—a pivotal first step in the direction of human well being threat evaluation. J. Hazard. Mater. 404, 124004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schwabl, P. et al. Detection of varied microplastics in human stool: a potential case sequence. Ann. Intern. Med. 171, 453–457 (2019).

    Article 

    Google Scholar
     

  • Deng, Y. et al. Polystyrene microplastics have an effect on the reproductive efficiency of male mice and lipid homeostasis of their offspring. Environ. Sci. Technol. Lett. 9, 752–757 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sussarellu, R. et al. Oyster copy is affected by publicity to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Choi, J. S., Kim, Okay., Hong, S. H., Park, Okay.-I. & Park, J.-W. Affect of polyethylene terephthalate microfiber size on mobile responses within the Mediterranean mussel Mytilus galloprovincialis. Mar. Environ. Res. 168, 105320 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jin, H. et al. Analysis of neurotoxicity in BALB/c mice following persistent publicity to polystyrene microplastics. Environ. Well being Perspect. 130, 107002 (2022).

    Article 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Legislation, Okay. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 

    Google Scholar
     

  • Aznar, M., Ubeda, S., Dreolin, N. & Nerin, C. Dedication of non-volatile elements of a biodegradable meals packaging materials primarily based on polyester and polylactic acid (PLA) and its migration to meals simulants. J. Chromatogr. A 1583, 1–8 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ncube, L. Okay., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R. & Beas, I. N. Environmental influence of meals packaging supplies: a overview of latest improvement from typical plastics to polylactic acid primarily based supplies. Supplies 13, 4994 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balla, E. et al. Poly (lactic acid): a flexible biobased polymer for the longer term with multifunctional properties—from monomer synthesis, polymerization methods and molecular weight enhance to PLA functions. Polymers 13, 1822 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ramot, Y., Haim-Zada, M., Domb, A. J. & Nyska, A. Biocompatibility and security of PLA and its copolymers. Adv. Drug Deliv. Rev. 107, 153–162 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to growing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater. 413, 125321 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duan, Z. et al. Weight-reduction plan desire of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal harm and microbiota dysbiosis. J. Hazard. Mater. 429, 128332 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. An in situ depolymerization and liquid chromatography–tandem mass spectrometry methodology for quantifying polylactic acid microplastics in environmental samples. Environ. Sci. Technol. 56, 13029–13035 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yan, M., Yang, J., Solar, H., Liu, C. & Wang, L. Prevalence and distribution of microplastics in sediments of a man-made lake receiving reclaimed water. Sci. Whole Environ. 813, 152430 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. F. et al. Hundreds of thousands of microplastics launched from a biodegradable polymer throughout biodegradation/enzymatic hydrolysis. Water Res. 211, 118068 (2022).

    Article 
    CAS 

    Google Scholar
     

  • González-Pleiter, M. et al. Secondary nanoplastics launched from a biodegradable microplastic severely influence freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).

    Article 

    Google Scholar
     

  • Lambert, S. & Wagner, M. Characterisation of nanoplastics throughout the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lambert, S. & Wagner, M. Formation of microscopic particles throughout the degradation of various polymers. Chemosphere 161, 510–517 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mattsson, Okay., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene below simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Entrance. Mar. Sci. 7, 578178 (2021).

    Article 

    Google Scholar
     

  • Sorasan, C. et al. Technology of nanoplastics throughout the photoageing of low-density polyethylene. Environ. Pollut. 289, 117919 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. Steam disinfection releases micro (nano) plastics from silicone-rubber child teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wright, S. L. & Kelly, F. J. Plastic and human well being: a micro concern? Environ. Sci. Technol. 51, 6634–6647 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gruber, M. M. et al. Plasma proteins facilitates placental switch of polystyrene particles. J. Nanobiotechnol. 18, 128 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. F., Hu, Y., Solar, W. Q. & Xie, C. S. Polylactic acid nanoparticles throughout the brain-blood barrier noticed with analytical electron microscopy. Chin. J. Biotechnol. 20, 790–794 (2004).

    CAS 

    Google Scholar
     

  • Dawson, A. L. et al. Turning microplastics into nanoplastics by means of digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article 

    Google Scholar
     

  • Ubeda, S., Aznar, M., Alfaro, P. & Nerin, C. Migration of oligomers from a food-contact biopolymer primarily based on polylactic acid (PLA) and polyester. Anal. Bioanal. Chem. 411, 3521–3532 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fan, P., Yu, H., Xi, B. & Tan, W. A overview on the incidence and affect of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or menace? Environ. Int. 163, 107244 (2022).

    Article 

    Google Scholar
     

  • Manavitehrani, I., Fathi, A., Wang, Y., Maitz, P. Okay. & Dehghani, F. Bolstered poly(propylene carbonate) composite with enhanced and tunable traits, an alternate for poly(lactic acid). ACS Appl. Mater. Interfaces 7, 22421–22430 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Navarro, S. M. et al. Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine 11, 1653–1669 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bellac, C. L., Dufour, A., Krisinger, M. J., Loonchanta, A. & Starr, A. E. Macrophage matrix metalloproteinase-12 dampens irritation and neutrophil inflow in arthritis. Cell Rep. 9, 618–632 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zangmeister, C. D., Radney, J. G., Benkstein, Okay. D. & Kalanyan, B. Frequent single-use shopper plastic merchandise launch trillions of sub-100 nm nanoparticles per liter into water throughout regular use. Environ. Sci. Technol. 56, 5448–5455 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hernandez, L. M. et al. Plastic teabags launch billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tilston, E. L., Gibson, G. R. & Collins, C. D. Colon prolonged physiologically primarily based extraction check (CE-PBET) will increase bioaccessibility of soil-bound PAH. Environ. Sci. Technol. 45, 5301–5308 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Macfarlane, G. T., Macfarlane, S. & Gibson, G. Validation of a three-stage compound steady tradition system for investigating the impact of retention time on the ecology and metabolism of micro organism within the human colon. Microb. Ecol. 35, 180–187 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Capolino, P. et al. In vitro gastrointestinal lipolysis: alternative of human digestive lipases by a mix of rabbit gastric and porcine pancreatic extracts. Meals Dig. 2, 43–51 (2011).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments