Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds considerably diminished by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).
Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic particles all through the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).
Koelmans, A. A. et al. Threat evaluation of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).
Li, D. et al. Microplastic launch from the degradation of polypropylene feeding bottles throughout toddler method preparation. Nat. Meals 1, 746–754 (2020).
Senathirajah, Okay. et al. Estimation of the mass of microplastics ingested—a pivotal first step in the direction of human well being threat evaluation. J. Hazard. Mater. 404, 124004 (2021).
Schwabl, P. et al. Detection of varied microplastics in human stool: a potential case sequence. Ann. Intern. Med. 171, 453–457 (2019).
Deng, Y. et al. Polystyrene microplastics have an effect on the reproductive efficiency of male mice and lipid homeostasis of their offspring. Environ. Sci. Technol. Lett. 9, 752–757 (2022).
Sussarellu, R. et al. Oyster copy is affected by publicity to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).
Choi, J. S., Kim, Okay., Hong, S. H., Park, Okay.-I. & Park, J.-W. Affect of polyethylene terephthalate microfiber size on mobile responses within the Mediterranean mussel Mytilus galloprovincialis. Mar. Environ. Res. 168, 105320 (2021).
Jin, H. et al. Analysis of neurotoxicity in BALB/c mice following persistent publicity to polystyrene microplastics. Environ. Well being Perspect. 130, 107002 (2022).
Geyer, R., Jambeck, J. R. & Legislation, Okay. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
Aznar, M., Ubeda, S., Dreolin, N. & Nerin, C. Dedication of non-volatile elements of a biodegradable meals packaging materials primarily based on polyester and polylactic acid (PLA) and its migration to meals simulants. J. Chromatogr. A 1583, 1–8 (2019).
Ncube, L. Okay., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R. & Beas, I. N. Environmental influence of meals packaging supplies: a overview of latest improvement from typical plastics to polylactic acid primarily based supplies. Supplies 13, 4994 (2020).
Balla, E. et al. Poly (lactic acid): a flexible biobased polymer for the longer term with multifunctional properties—from monomer synthesis, polymerization methods and molecular weight enhance to PLA functions. Polymers 13, 1822 (2021).
Ramot, Y., Haim-Zada, M., Domb, A. J. & Nyska, A. Biocompatibility and security of PLA and its copolymers. Adv. Drug Deliv. Rev. 107, 153–162 (2016).
Zhang, X. et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to growing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater. 413, 125321 (2021).
Duan, Z. et al. Weight-reduction plan desire of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal harm and microbiota dysbiosis. J. Hazard. Mater. 429, 128332 (2022).
Wang, L. et al. An in situ depolymerization and liquid chromatography–tandem mass spectrometry methodology for quantifying polylactic acid microplastics in environmental samples. Environ. Sci. Technol. 56, 13029–13035 (2022).
Yan, M., Yang, J., Solar, H., Liu, C. & Wang, L. Prevalence and distribution of microplastics in sediments of a man-made lake receiving reclaimed water. Sci. Whole Environ. 813, 152430 (2022).
Wei, X. F. et al. Hundreds of thousands of microplastics launched from a biodegradable polymer throughout biodegradation/enzymatic hydrolysis. Water Res. 211, 118068 (2022).
González-Pleiter, M. et al. Secondary nanoplastics launched from a biodegradable microplastic severely influence freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).
Lambert, S. & Wagner, M. Characterisation of nanoplastics throughout the degradation of polystyrene. Chemosphere 145, 265–268 (2016).
Lambert, S. & Wagner, M. Formation of microscopic particles throughout the degradation of various polymers. Chemosphere 161, 510–517 (2016).
Mattsson, Okay., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene below simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Entrance. Mar. Sci. 7, 578178 (2021).
Sorasan, C. et al. Technology of nanoplastics throughout the photoageing of low-density polyethylene. Environ. Pollut. 289, 117919 (2021).
Su, Y. et al. Steam disinfection releases micro (nano) plastics from silicone-rubber child teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).
Wright, S. L. & Kelly, F. J. Plastic and human well being: a micro concern? Environ. Sci. Technol. 51, 6634–6647 (2017).
Gruber, M. M. et al. Plasma proteins facilitates placental switch of polystyrene particles. J. Nanobiotechnol. 18, 128 (2020).
Wang, H. F., Hu, Y., Solar, W. Q. & Xie, C. S. Polylactic acid nanoparticles throughout the brain-blood barrier noticed with analytical electron microscopy. Chin. J. Biotechnol. 20, 790–794 (2004).
Dawson, A. L. et al. Turning microplastics into nanoplastics by means of digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).
Ubeda, S., Aznar, M., Alfaro, P. & Nerin, C. Migration of oligomers from a food-contact biopolymer primarily based on polylactic acid (PLA) and polyester. Anal. Bioanal. Chem. 411, 3521–3532 (2019).
Fan, P., Yu, H., Xi, B. & Tan, W. A overview on the incidence and affect of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or menace? Environ. Int. 163, 107244 (2022).
Manavitehrani, I., Fathi, A., Wang, Y., Maitz, P. Okay. & Dehghani, F. Bolstered poly(propylene carbonate) composite with enhanced and tunable traits, an alternate for poly(lactic acid). ACS Appl. Mater. Interfaces 7, 22421–22430 (2015).
Navarro, S. M. et al. Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine 11, 1653–1669 (2016).
Bellac, C. L., Dufour, A., Krisinger, M. J., Loonchanta, A. & Starr, A. E. Macrophage matrix metalloproteinase-12 dampens irritation and neutrophil inflow in arthritis. Cell Rep. 9, 618–632 (2014).
Zangmeister, C. D., Radney, J. G., Benkstein, Okay. D. & Kalanyan, B. Frequent single-use shopper plastic merchandise launch trillions of sub-100 nm nanoparticles per liter into water throughout regular use. Environ. Sci. Technol. 56, 5448–5455 (2022).
Hernandez, L. M. et al. Plastic teabags launch billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).
Tilston, E. L., Gibson, G. R. & Collins, C. D. Colon prolonged physiologically primarily based extraction check (CE-PBET) will increase bioaccessibility of soil-bound PAH. Environ. Sci. Technol. 45, 5301–5308 (2011).
Macfarlane, G. T., Macfarlane, S. & Gibson, G. Validation of a three-stage compound steady tradition system for investigating the impact of retention time on the ecology and metabolism of micro organism within the human colon. Microb. Ecol. 35, 180–187 (1998).
Capolino, P. et al. In vitro gastrointestinal lipolysis: alternative of human digestive lipases by a mix of rabbit gastric and porcine pancreatic extracts. Meals Dig. 2, 43–51 (2011).