Friedlaender A, Addeo A, Russo A, Gregorc V, Cortinovis D, Rolfo CD. Focused therapies in early stage NSCLC: hype or hope? Int J Mol Sci. 2020;21:6329.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71:209–49.
Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of ailments. Nat Rev Most cancers. 2014;14:535–46.
Yang Z, Tam KY. Mixture methods utilizing EGFR-TKi in NSCLC remedy: studying from the hole between pre-clinical outcomes and medical outcomes. Int J Biol Sci. 2018;14:204–16.
Boumahdi S, de Sauvage FJ. The good escape: tumour cell plasticity in resistance to focused remedy. Nat Rev Drug Discov. 2020;19:39–56.
Li H, Wei W, Xu H. Drug discovery is an everlasting problem for the biomedical sciences. Acta Materia Medica. 2022;1:1–3.
Bertran-Alamillo J, Cattan V, Schoumacher M, Codony-Servat J, Giménez-Capitán A, Cantero F, Burbridge M, Rodríguez S, Teixidó C, Roman R, Castellví J, et al. AURKB as a goal in non-small cell lung most cancers with acquired resistance to anti-EGFR remedy. Nat Commun. 2019;10:1812.
Nigro A, Ricciardi L, Salvato I, Sabbatino F, Vitale M, Crescenzi MA, Montico B, Triggiani M, Pepe S, Stellato C, Casolaro V, et al. Enhanced expression of CD47 is related to off-target resistance to tyrosine kinase inhibitor gefitinib in NSCLC. Entrance Immunol. 2019;10:3135.
Fan J, Xu G, Chang Z, Zhu L, Yao J. miR-210 transferred by lung most cancers cell-derived exosomes could act as proangiogenic consider cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci. 2020;134:807–25.
Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, Shi S, Zhu Ok, Qu X, Hu W, Liu P, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung most cancers xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824–40.
Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J. Drug resistance by way of suggestions activation of stat3 in oncogene-addicted most cancers cells. Most cancers Cell. 2014;26:207–21.
Mohrherr J, Uras IZ, Moll HP, Casanova E. STAT3: versatile features in non-small cell lung most cancers. Cancers. 2020;12:1107.
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Grey JW, Chen FF. Nanoparticle-mediated systemic supply of siRNA for therapy of cancers and viral infections. Theranostics. 2014;4:872–92.
Lamb YN. Inclisiran: first approval. Medication. 2021;81:389–95.
Yuen MF, Schiefke I, Yoon JH, Ahn SH, Heo J, Kim JH, Lik Yuen Chan H, Yoon KT, Klinker H, Manns M, Petersen J, et al. RNA interference remedy with ARC-520 ends in extended hepatitis b floor antigen response in sufferers with continual hepatitis B an infection. Hepatology. 2020;72:19–31.
Alidori S, Akhavein N, Thorek DL, Behling Ok, Romin Y, Queen D, Beattie BJ, Manova-Todorova Ok, Bergkvist M, Scheinberg DA, McDevitt MR. Focused fibrillar nanocarbon RNAi therapy of acute kidney damage. Sci Transl Med. 2016. https://doi.org/10.1126/scitranslmed.aac9647.
Lu Y, Li J, Su N, Lu D. The mechanism for siRNA transmembrane assisted by PMAL. Molecules. 2018;23:1586.
Arnold AE, Czupiel P, Shoichet M. Engineered polymeric nanoparticles to information the mobile internalization and trafficking of small interfering ribonucleic acids. J Management Launch. 2017;259:3–15.
Subhan MA, Torchilin VP. Environment friendly nanocarriers of siRNA therapeutics for most cancers therapy. Transl Res. 2019;214:62–91.
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev. 2016;104:93–109.
Barua S, Mitragotri S. Challenges related to penetration of nanoparticles throughout cell and tissue obstacles: a assessment of present standing and future prospects. Nano At present. 2014;9:223–43.
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to beat most cancers drug resistance. Adv Drug Deliv Rev. 2013;65:1866–79.
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AAA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, et al. Small interfering RNA for most cancers therapy: overcoming hurdles in supply. Acta Pharm Sin B. 2020;10:2075–109.
Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA supply techniques for most cancers remedy. Molecules. 2020;25:2692.
Subhan MA, Torchilin VP. siRNA based mostly drug design, high quality, supply and medical translation. Nanomedicine. 2020;29:102239.
Akinc A, Maier MA, Manoharan M, Fitzgerald Ok, Jayaraman M, Barros S, Ansell S, Du X, Hope MJ, Madden TD, Mui BL, et al. The onpattro story and the medical translation of nanomedicines containing nucleic acid-based medication. Nat Nanotechnol. 2019;14:1084–7.
Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, et al. Cation-free sirna micelles as efficient drug supply platform and potent RNAI nanomedicines for glioblastoma remedy. Adv Mater. 2021;33:e2104779.
Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y. Correlating animal and human part Ia/Ib medical information with CALAA-01, a focused, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA. 2014;111:11449–54.
Zipkin M. Large pharma buys into exosomes for drug supply. Nat Biotechnol. 2020;38:1226–8.
Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of lipid nanoparticles for RNA supply. Acc Chem Res. 2022;55:2–12.
Merino M, Zalba S, Garrido MJ. Immunoliposomes in medical oncology: state-of-the-art and future views. J Management Launch. 2018;275:162–76.
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from fundamentals to medical immunization. J Management Launch. 2019;303:130–50.
Inglut CT, Sorrin AJ, Kuruppu T, Vig S, Cicalo J, Ahmad H, Huang HC. Immunological and toxicological issues for the design of liposomes. Nanomaterials. 2020;10:190.
Alfieri M, Leone A, Ambrosone A. Plant-derived nano and microvesicles for human well being and therapeutic potential in nanomedicine. Pharmaceutics. 2021;13:498.
Urzì O, Raimondo S, Alessandro R. Extracellular vesicles from vegetation: present data and open questions. Int J Mol Sci. 2021;22:5366.
Karamanidou T, Tsouknidas A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int J Mol Sci. 2021;23:191.
Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D, Zhang HG. Supply of therapeutic brokers by nanoparticles product of grapefruit-derived lipids. Nat Commun. 2013;4:1867.
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic strategy for the prevention and therapy of inflammatory bowel illness and colitis-associated most cancers. Biomaterials. 2016;101:321–40.
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, et al. Grape exosome-like nanoparticles induce intestinal stem cells and shield mice from DSS-induced colitis. Mol Ther. 2013;21:1345–57.
Raimondo S, Saieva L, Cristaldi M, Monteleone F, Fontana S, Alessandro R. Label-free quantitative proteomic profiling of colon most cancers cells identifies acetyl-CoA carboxylase alpha as antitumor goal of citrus limon-derived nanovesicles. J Proteomics. 2018;173:1–11.
Motohashi N, Shirataki Y, Kawase M, Tani S, Sakagami H, Satoh Ok, Kurihara T, Nakashima H, Mucsi I, Varga A, Molnár J. Most cancers prevention and remedy with kiwifruit in Chinese language folklore medication: a examine of kiwifruit extracts. J Ethnopharmacol. 2002;81:357–64.
Lippi G, Mattiuzzi C. Kiwifruit and most cancers: an outline of organic proof. Nutr Most cancers. 2020;72:547–53.
Kou L, Zhu Z, Redington C, Bai Q, Wakefield M, Lequio M, Fang Y. Potential use of kiwifruit extract for therapy of melanoma. Med Oncol. 2021;38:25.
Cao M, Yan H, Han X, Weng L, Wei Q, Solar X, Lu W, Wei Q, Ye J, Cai X, Hu C, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma development. J Immunother Most cancers. 2019;7:326.
Han X, Wei Q, Lv Y, Weng L, Huang H, Wei Q, Li M, Mao Y, Hua D, Cai X, Cao M, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the chilly tumor microenvironment. Mol Ther. 2022;30:327–40.
Hu M, Zhang J, Kong L, Yu Y, Hu Q, Yang T, Wang Y, Tu Ok, Qiao Q, Qin X, Zhang Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for most cancers immunochemotherapy. ACS Nano. 2021;15:3123–38.
Zhang Y, Zhang L, Hu Y, Jiang Ok, Li Z, Lin YZ, Wei G, Lu W. Cell-permeable NF-κB inhibitor-conjugated liposomes for therapy of glioma. J Management Launch. 2018;289:102–13.
Huang H, Zhang C, Yang S, Xiao W, Zheng Q, Music X. The investigation of mRNA vaccines formulated in liposomes administrated in a number of routes towards SARS-CoV-2. J Management Launch. 2021;335:449–56.
Persano S, Guevara ML, Li Z, Mai J, Ferrari M, Pompa PP, Shen H. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials. 2017;125:81–9.
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for most cancers remedy. Adv Drug Deliv Rev. 2014;66:110–6.
He Ok, Tang M. Security of novel liposomal medication for most cancers therapy: advances and prospects. Chem Biol Work together. 2018;295:13–9.
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug Ok, Petralia F, Li Y, Liang WW, Reva B, Krek A, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell. 2020;182:200-225.e35.
Durm GA, Jabbour SK, Althouse SK, Liu Z, Sadiq AA, Zon RT, Jalal SI, Kloecker GH, Williamson MJ, Reckamp KL, Langdon RM, et al. A part 2 trial of consolidation pembrolizumab following concurrent chemoradiation for sufferers with unresectable stage III non-small cell lung most cancers: hoosier most cancers analysis community LUN 14–179. Most cancers. 2020;126:4353–61.
Chaib I, Karachaliou N, Pilotto S, Codony Servat J, Cai X, Li X, Drozdowskyj A, Servat CC, Yang J, Hu C, Cardona AF, et al. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J Natl Most cancers Inst. 2017. https://doi.org/10.1093/jnci/djx014.
Pore N, Wu S, Standifer N, Jure-Kunkel M, de Los Reyes M, Shrestha Y, Halpin R, Rothstein R, Mulgrew Ok, Blackmore S, Martin P, et al. Resistance to durvalumab and durvalumab plus tremelimumab is related to purposeful STK11 mutations in sufferers with non-small cell lung most cancers and is reversed by STAT3 knockdown. Most cancers Discov. 2021;11:2828–45.
Njatcha C, Farooqui M, Kornberg A, Johnson DE, Grandis JR, Siegfried JM. STAT3 cyclic decoy demonstrates strong antitumor results in non-small cell lung most cancers. Mol Most cancers Ther. 2018;17:1917–26.
Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V. Analysis strategies made easy: evaluation of collective cell migration utilizing the wound therapeutic assay. J Make investments Dermatol. 2017;137:e11–6.